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AbstractIThe rates of heat transfer for flow through a periodic array of wavy passages are studied with 
an accurate numerical scheme. The flow was observed to be steady until Re around 180 after which self- 
sustained oscillatory flow was observed. The self-sustained oscillations lead to the destabilization of laminar 
thermal boundary layers, replenish the near-wall fluid with the fluid in the core region, and thus provide a 
natural mechanism of heat and mass transfer enhancement. In the steady-flow regime, the average Nusselt 
numbers for the wavy wall channel were only slightly larger than those for a parallel-plate channel. On the 
other hand, in the transitional-flow regime, the enhancement of heat transfer was about a factor of 2.5. 
Friction factors for the wavy channel were about twice those for the parallel-plate channel in the steady- 

flow region, and remained almost constant in the transitional regime. 

1. INTRODUCTION 

There is a considerable amount of literature on 
methods to increase the rates of heat and mass transfer 
in compact exchange devices operated in the laminar 
flow regime [1]. The objective sought by these methods 
is to interrupt efficiently the boundary layer that forms 
on the exchange surface and replace it with fluid from 
the core, thereby creating a fresh boundary layer that 
has increased near-wall temperature (and con- 
centration) gradients. Some examples of such tech- 
niques are off-set fins, louvers, vortex generators, com- 
municating channels, acoustic excitation of the flow, 
oscillatory inflow, etc. The goal is to employ the tech- 
nique that has the least pressure drop but the largest 
heat/mass transfer rate. However, other criteria such 
as simplicity, ease of manufacturability, dust col- 
lection in the passage, maintenance, scaling, etc., also 
become important. Applications of compact exchange 
devices abound in engineering, notably in the air-con- 
ditioning and refrigeration industry. 

One geometry oflLhe flow passage that is very simple 
and may be used to enhance the exchanger per- 
formance is that formed by wavy walls. Wavy chan- 
nels are easy to fabricate and can provide significant 
heat transfer enhancement if operated in an appro- 
priate (transitional) Reynolds-number range. There- 
fore, wavy passages have been considered in several 
earlier studies as a means to enhance heat/mass trans- 
fer in compact exchange devices. Both corrugated and 
converging~liverging cross-sections have been studied 
experimentally and numerically. An important obser- 
vation made is that wavy passages do not provide any 
significant heat transfer enhancement when the flow 
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is steady. However, if the flow is made unsteady (either 
through external forcing or through natural tran- 
sitioning to an unsteady state) significant increases in 
heat exchange are observed. This is a result of complex 
interactions between the core fluid and the boundary- 
layer fluid through shear-layer destabilization and 
self-sustained oscillations. It is in this regime that such 
passages can be very effective and our objective, there- 
fore, has been to quantify such gains as well as pen- 
alties (increased pressure drop) through accurate and 
well-resolved numerical computations of the unsteady 
flow and heat exchange processes. A review of pre- 
vious studies of wavy passages is given in Section 2. 
The steady regime does not provide any benefit, thus 
eliminating this passage as a possible augmentation 
device. However, we demonstrate (and confirm some 
earlier experimental studies) that a significant increase 
in heat transfer can be achieved when the flow changes 
to an unsteady self-sustained oscillatory state. Such 
self-sustained oscillations belong to a generic class of 
oscillations over cavities, studied extensively in aero- 
dynamics. The transitional Reynolds number for the 
onset of these oscillations varies with flow geometry, 
but is typically low to be of interest to compact ex- 
change devices. 

Section 2 first provides an overview of contributions 
made by previous researchers on the present topic. 
Section 3 presents the governing equations and the 
numerical procedure. In the present study, a geometry 
that was earlier experimentally investigated by Nishi- 
mura et al. [2] has been considered. Both steady and 
unsteady regimes over a wide range of Reynolds num- 
bers have been analysed. Section 4 describes the com- 
putational details and the grid sensitivity studies car- 
ried out to ensure numerical accuracy. Section 5 
presents the steady characteristics, followed by Sec- 
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NOMENCLATURE 

a amplitude of the wavy wall [m] 
Cf friction coefficient Tw/(O.5pU~v) 
Dh hydraulic diameter [m] 
f friction factor ApH.v/(2pU2av2) 
h heat transfer coefficient [W m -2 K-l]  
H inter-wall spacing [m] 
J Jacobian of the coordinate 

transformation [m 2] 
k thermal conductivity [W m -~ K -~] 
Nu Nusselt number hDh/k 
p pressure [N m -2] 
Re Reynolds number uavHav/V 
St Strouhal number fDh/u.v 
t time [s] 
T temperature [K] 
u Cartesian velocity component in the x 

direction [m s 1] 
U contravariant velocity component 

perpendicular to the lines of 
constant ~ [m 3 s -l] 

v Cartesian velocity component in the y 
direction [m s-q  

V contravariant velocity component 
perpendicular to the lines of 
constant ~/[m 3 s-q.  

A 

2 
V 

P 

qb 

(O 

Greek symbols 
thermal diffusivity [m 2 s-~] 

curvilinear coordinate 
normalized vorticity (DOmax/Uma x 

dimensionless temperature 
(T-- Tw)/(Tm,- Tw) 
source function in the energy equation 
[s-'] 
wavelength of the wavy wall [m] 
kinematic molecular viscosity [m 2 s-l] 
curvilinear coordinate 
density [kg m -s] 
normalized time tUmi./Hmi n 
scalar potential [m 2 s -2] 
vorticity [s- ~]. 

Subscripts 
av quantity evaluated at the 

~(Hmax + Hmin) cross-section 
in quantity evaluated at the inlet 
m mean property evaluated at constant 

lines 
m 1 mean property evaluated at the inlet 
m2 mean property evaluated at the outlet 
max quantity evaluated at the maximum 

cross-section 
min quantity evaluated at the minimum 

cross-section 
n number of the wave 
w quantity evaluated at the wall. 

tion 6 in which the unsteady features are described. 
Detailed pictorial descriptions of the unsteady flow 
and temperature fields that are responsible for the 
increased heat exchange are given along with quan- 
titative data on friction factors and heat transfer rates. 
These results are, however, limited to one set of geo- 
metrical parameters and other sets in the parameter 
space may have somewhat different effectiveness. The 
exploration of the effects of such parameters can be 
an exhaustive research program and will be of an 
ongoing interest to us. 

2. PREVIOUS RESEARCH 

Viscous flow in wavy channels was first treated ana- 
lytically by Burns and Parks [3]. The solution was 
obtained by expressing the stream function in a Fourier 
series under the assumption of Stokes flow. Vajravelu 
[4] studied the flow and heat transfer effects account- 
ing for the convection contributions by a perturbation 
method using the long-wave approximation, where 
the solution consisted of a mean part and a perturbed 
part. 

Goldstein and Sparrow [5] were probably the first 
to study the local and average heat/mass transfer 
characteristics for laminar, transitional, and low 
Reynolds number turbulent flow in a corrugated wall 

channel. It was shown experimentally that, in the lami- 
nar regime upto a Reynolds number of 1000-1200, 
the transfer coefficients were only moderately larger 
than those for a parallel-plate channel. However, for 
the low Reynolds number turbulent flow (Re = 6000- 
8000), the rates of heat transfer exceeded those for 
the straight channel by nearly a factor of three. The 
corrugated channel had only two corrugation cycles, 
and thus those results were influenced by the entrance 
effects. O'Brien and Sparrow [6] studied the heat 
transfer characteristics in the fully developed region 
of a periodic channel in the Reynolds number range 
of Re -- 1500 to Re = 25 000. A level of heat transfer 
enhancement by about a factor of 2.5 over a con- 
ventional straight channel was observed, resulting 
from a highly complex flow pattern including a strong 
forward flow and an oppositely directed recirculating 
flow. The effects of varying the spacing between the 
corrugated walls was examined by Sparrow and Comb 
[7] in the Reynolds number range of 2000 to 27 000. 
The increase of the inter-wall spacing gave rise to a 
30% increase in the fully developed Nusselt number 
compared with that of O'Brien and Sparrow [6], but 
the friction factor was more than doubled. 

All and Ramadhyani [8] recently conducted an 
experimental study in corrugated channels of planar 
cross-section in the steady and transitional Reynolds 
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number regimes (150 < R e  < 4000). Flow visual- 
ization studies indicated the appearance of longi- 
tudinal vortices, as the Reynolds number was pro- 
gressively increased. Furthermore, it was observed 
that in the transitional regime, spanwise vortical struc- 
tures rolled up from the shear layers at a regular 
frequency corresponding to a Strouhal number 
(S t  =fDh/Uav) between 0.8 and 1.1. These spanwise 
eddies transfer near-wall fluid to the core region and 
enhance the rate of heat transfer. Performance evalu- 
ations under the constraints of equal pressure drop, 
equal mass flow and equal pumping power all indi- 
cated that corrugated channels operated at tran- 
sitional Reynolds numbers provide superior rates of 
heat transfer. It was also observed that the channel 
wall spacing has an appreciable effect on the onset of 
transition to an un,;teady flow. Numerical studies of 
steady flow and heat transfer in corrugated channels 
have been conducted by Garg and Maji [9], Amano 
et al. [10], Asako and Faghri [11] and Asako et  al. 

[12]. 
Sparrow and Prata [13] conducted experimental 

and numerical studies of flow and heat transfer in 
a symmetric triangular wavy wall. The experimental 
study was limited to Reynolds numbers below 200 and 
did not show any heat transfer enhancement over the 
straight tube value. The numerical study solved the 
steady-state flow and energy equations and also did 
not reveal any increase in heat transfer even at Reyn- 
olds numbers of 1000. However, in the turbulent 
regime (Re  = 6000--70000), it was seen [14] that the 
rates of heat transfer are much larger than those in an 
equivalent straight tube. Even after discounting the 
additional pressure drop resulting from larger wall 
shear, wavy passage,s were found to provide enhanced 
heat transfer. 

Flow characteristics in a channel with a symmetric 
sinusoidal wavy wall were investigated experimentally 
and numerically by Nishimura et  al. [2]. In the laminar 
flow regime, the friction factor was observed to be 
inversely proportional to Reynolds number, but in the 
transitional and turbulent regimes it was independent 
of Reynolds number. Furthermore, there is small peak 
in the friction factor curve which was accredited to 
the flow transition. The numerical prediction of the 
pressure drop was in good agreement with the mea- 
sured values until about R e  = 350. Nishimura et al. 
[15, 16] also studied the mass transfer coefficients at 
high Peclet numbers for the same channel, and the 
mass transfer mechanism was interpreted on the basis 
of the flow results. For steady flow, no enhancement 
in mass transfer was observed, but the increase was 
remarkable once the flow became unsteady. The fric- 
tion factor remained constant instead of decreasing 
with Reynolds number. In a comparative assessment 
of three lateral alignments of the waves, Nishimura et  
al. [17] inferred that the corrugated channel offered 
slightly better performance over furrowed channels. 
However, only one set of amplitude and wavelength 

was considered and the observations made could be 
different if these were varied. 

There were several other studies related to this prob- 
lem. Sobey [18] presented the flow pattern for steady 
and oscillatory flow in a channel with sinusoidal wavy 
walls in order to understand the performance of the 
Oxford membrane oxygenator (Bellhouse et  al. [19]) 
and to determine the details of the flow structure. 
Stephanoff et  al. [20] qualitatively confirmed the 
numerical results of Sobey by demonstrating visually 
the process of vortical formation, growth and sub- 
sequent ejection from a furrow. Sobey [21, 22] further 
predicted the quasi-steady solution in the small Strou- 
hal number region and the expansion of vortices dur- 
ing a deceleration in asymmetric channels, with the 
Strouhal number sufficiently large for the flow not to 
be quasi-steady. Ralph [23] investigated the oscil- 
latory viscous flow in a wavy-walled tube for Strouhal 
numbers between 0.025 and 0.045 and reported the 
development of time-asymmetric flow. The occurrence 
of time asymmetry was regarded as a bifurcation of 
the flow structure in this Strouhal number range. Ste- 
phanoff [24] conducted an experimental study on self- 
excited shear-layer oscillations in a multi-cavity chan- 
nel similar to the earlier numerical [18] and exper- 
imental [20] investigations. The experiment was held 
at constant mean velocity, and the selective ampli- 
fication of a single frequency was observed. Recently 
Guzmfin and Amen [25] conducted simulations of the 
transition process from laminar to chaotic flow using 
a spectral element method. The transition path to 
chaos was characterized and the corresponding 
streamline development was illustrated. These results 
are similar to some of the observations of our current 
study. 

Although not directly related to the present work, 
there have been several numerical studies of transport 
phenomena in grooved and communicating channels 
[26-30]. The conclusions of these studies are similar 
to those in wavy passages, namely that significant heat 
transfer enhancement can be obtained at super-critical 
Reynolds numbers while also minimizing the dis- 
sipation due to viscous stresses. There also exist sev- 
eral Japanese experimental and numerical studies in 
sinusoidal wavy channels [31-34], which we have not 
been able to access because of the language of pub- 
lication. 

The present study provides a systematic quan- 
titative characterization of the forced convective heat 
transfer processes in a wavy passage. 

3. CONSERVATION EQUATIONS AND 
NUMERICAL PROCEDURE 

In the present study, the flow is considered to be 
two-dimensional with no variation in the spanwise 
direction. The governing equations for the flow and 
energy transport can be written as : 

v - . = 0  (1) 
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+V ' (uu )  = - V p + v V 2 u  (2) 

~ + 0 A + V "  (u0) = o~V20 (3) 

where 0 = ( T - T w ) / ( T m l -  Tw), and v and a are the 
kinematic viscosity and the thermal diffusivity respec- 
tively. Here, Tw is the wall temperature and Tml is the 
mixed mean fluid temperature (mass averaged tem- 
perature) evaluated at the inlet section of the com- 
putational domain. The unknown function A in the 
energy equation is given by 

1 

A Tm, -- Tw c~t (Tml -- Tw). (4) 

This term results from the present normalization pro- 
cedure as Tm~ is a function of time when the flow is 
unsteady, and it can be determined iteratively. We 
have also assumed the density to be unity. 

These conservation equations are solved on a curvi- 
linear orthogonal grid. The orthogonal mesh is gen- 
erated by a general case of sequential mapping [35], 
i.e. by solving 

x¢~+x,~ = 0 and y ~ + y ~  = 0 (5) 

to generate the interior mesh points. A boundary value 
for x or y is computed from the orthogonality 
constraint, and the other coordinate value is then 
determined by the relation describing the shape of the 
boundary [36]. 

The numerical integration of the above equations 
is based on a two-stage fractional step procedure with 
backward Euler differencing of the time derivative and 
Adams-Bashforth explicit differencing for the con- 
vection terms. The Crank-Nicolson implicit scheme 
is used for the diffusion terms. In a fractional step 
procedure, the first stage of the integration consists of 
solving the momentum equations for an intermediate 
velocity field fi given by 

f i  - u ~ 3 n 1 n--I Y 
At - ~H - ~ H  +~V2[f i+u  ~] (6) 

where H = - V -  [uu] and At is the time step size. This 
step is followed by the solution of a Poisson equation 
for 

V" [Vqb] = 1 V" fi (7) 
/ / /  

such that 

u n +  1 = f i - - V ~ A t  (8) 

satisfies the divergence free condition imposed by the 
mass continuity equation. The pressure field is related 
to the scalar potential @ by the relation 

p,+ l = 4y,+1 _ vAtv2~,+ t (9) 
2 

The implicit momentum equations for the two vel- 
ocity components (~, 13) are solved with a two-step 

operator splitting procedure involving line inversions 
along the two (¢ and ~/) directions. For the line inver- 
sion along the ~ direction, periodic boundary con- 
ditions are used while Dirichlet conditions are used at 
the no-slip walls in the q direction. The pressure Pois- 
son equation is solved with the multigrid technique 
[37] using a point Jacobi iterative procedure and a V- 
cycle correction scheme. Because of the uniform cell 
sizes and nearly isotropic coefficients, rapid conver- 
gence, typically in less than 15 V-cycles is obtained 
with several levels of grid coarsening. 

The determination of the temperature distribution 
is made complicated by the presence of the unknown 
function A in the energy equation. The coupling 
between 0 and A can be solved iteratively. First, the 
energy equation is solved with proper boundary con- 
ditions and a guessed value of A. Then, the inlet tem- 
perature, 0in is adjusted to satisfy the constraint that 
the mean temperature 0m~ is unity at the entrance. 
A new value of A is computed by summing finite- 
difference equations in the q direction at the inlet. This 
calculation procedure is repeated until a converged 
solution is obtained. 

The spatial discretization uses a collocated arrange- 
ment with the two Cartesian velocities and the pres- 
sure situated at the centers of discrete finite volumes in 
the computational domain. The continuity equation is 
satisfied by the mass fluxes located at the cell faces. 
These volume fluxes (U and V) are related to the 
Cartesian velocities (u and v) by 

u = J(~xu + ~yv) (lO) 

V = J(qxU+qyV) (11) 

where ix, Cy, qx and fly are the metrics of the trans- 
formation and J is the Jacobian. The values of 0 and 
I) are evaluated from fi and f at the cell centers. After 
corrections by the gradient ofqb, U and Vsatisfy mass 
continuity to the convergence accuracy of the pressure 
solution. However, the cell-centered u and v, even after 
the corrections, do not satisfy the mass continuity 
equation precisely, but the error is of the same order 
as the error in the spatial discretization. The boundary 
conditions and the details of the computation are pro- 
vided in the next section. 

4. COMPUTATIONAL DETAILS 

All calculations presented in this paper were per- 
formed for a geometry with dimensions shown in Fig. 
1 which corresponds to the geometry in the exper- 
imental study of Nishimura et al. [2]. Two plates with 
sinusoidal waves are placed with a mean spacing of 
1.3 units. Each wave has an amplitude-to-length ratio 
(2a/2) of 0.25 and a wavelength of 2.8 units. As boun- 
dary conditions, no slip conditions are prescribed for 
the Cartesian velocities together with a constant wall 
temperature condition for the energy equation. Thus, 

Uw=0, vw=0,  0w=0.  (12) 



Heat transfer in periodic wavy passages 3223 

l f 

s I-IE--2.0 m 

_ _  I ] a=0.35 m 

f the smusoidal wavy wall channel. Fig. 1. Geometry o 

In the streamwise direction, periodic conditions of the 
form 

u(O, y, t) = u(n~, y,  t) 

v(O,y, t) = v(n2,y,  t) 

0(0, y, t) O(n2, y, t) 
- -  - ( 1 3 )  

0ml 0m2(/) 

are used. Here, n denotes the number of the wave 
and 2 is the wavelength. 0m2 and 0m2 are the non- 
dimensional mass averaged temperatures at the inlet 
and the outlet of the computational domain. The 
imposition of periodicity for the temperature profile 
is similar to the specification of a fully developed con- 
dition in a circular pipe, as presented in Kays and 
Crawford [38]. For the pressure equation, no boun- 
dary conditions are necessary at the walls as the cell 
face fluxes are known (to be zero) directly on the 
walls. However, wall pressures are still necessary in 
updating the cell-centered Cartesian velocities and, in 
the present algorithm, these are obtained by a zero 
normal derivative condition. In the streamwise direc- 
tion, a constant pressure drop is specified, i.e. 

p(n2, y) -p(0 ,  y) = 20n2v. (14) 

An alternative cortdition will be to specify the mass 
flow through the channel. Here we have considered 
the pressure-drop condition. The Prandtl number was 
taken to be 0.7. 

Systematic grid refinement studies have been con- 
ducted to ensure numerical accuracy of the results. 
Calculations have been conducted with grids con- 
taining 64 × 32, 128 × 64, and 256 × 128 internal cells 
over one wavelength of the wave. Calculations are 
performed for various Reynolds numbers, ranging 
from the steady regime to the unsteady regime and 
comparisons of the flow and temperature profiles as 
well as the Nusselt number and friction factor have 
been made. In the steady regime, good accuracy was 
obtained with the 64× 32 grid. However, in the 
unsteady regime, a slight difference was observed 

between the results of the two finer grids. The finest 
grid with 256 x 128 cells was selected in all calculations 
presented in this paper. Finer grids were not con- 
sidered because of the computational costs. The effect 
of the streamwise length at which periodicity con- 
ditions were imposed was also studied by considering 
a computational domain of three wavelengths. In this 
case, a mesh of 768 × 128 cells was used. No differences 
were observed between the instantaneous flow pat- 
terns in individual furrows, thus demonstrating the 
adequacy of using only one of the waves as the com- 
putational domain. This observation is consistent with 
that of Amon and Mikic [26] for a channel with a 
rectangular groove. 

5. RESULTS FOR THE STEADY REGIME 

A systematic progression in Reynolds number was 
obtained by decreasing the fluid kinematic viscosity v. 
This also decreased the pressure drop through the 
channel appropriately to simulate a nearly linear 
decrease of friction factor with Reynolds number. 
(Because the kinematic viscosity was the independent 
variable, the Reynolds numbers actually obtained did 
not turn out to be integer values.) Although in the 
steady regime the flow is symmetrical about the hori- 
zontal centerline, requiring only the solution for one 
of the halves, the complete domain (between the two 
walls) was solved in order to locate the transition from 
the steady regime to the unsteady regime (where the 
flow is unsymmetric). The discretized equations were 
integrated for a sufficiently long time until a time 
invariant flow field was obtained. This convergence 
was monitored through successive changes in vel- 
ocities at representative positions. All calculations 
presented in this paper were obtained with the finest 
grid. Figure 2 shows the calculated streamlines at 
Reynolds numbers of 5.4, 20.6, 80.5 and 144.0. At 
Re = 5.4, the streamlines are nearly symmetrical 
about the vertical center line and no separation is 
observed. This indicates that the nonlinear convection 
terms are relatively small compared with the diffusion 
effects. With increase in Reynolds number, the stream- 
lines become asymmetrical about the vertical center 
line. The flow is first seen to separate at Re = 20.6, 
with steady vortices formed upstream of the crest of 
the upper wall (and the trough of the lower wall). 
With further increase in the Reynolds number, the 
recirculation zones increase in size and shift down- 
stream. The maximum stream function, normalized 
by the mean velocity (U~v) and half of the averaged 
channel height (H=v) increases, reflecting the growth 
of separation bubbles that are associated with negative 
flow. 

Figure 3 (a) presents comparisons of the calculated 
separation and reattachment points with the exper- 
imental data of Nishimura et al. [2] as a function of 
the Reynolds number. The calculated results are based 
on the steady-state solution in the steady regime and 
part of the transitional regime. The locations of the 
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Fig. 2. Contours of stream functions at various Reynolds numbers: (a) Re = 5.4; (b) Re = 20.6; (c) Re = 80.5; (d) 
Re = 144.0. 
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Fig. 3. (a) Variation in separation and reattachment points 
with Reynolds number. (b) Calculated wall vorticity profiles 

at various Reynolds numbers. 

separation and reattachment points are determined 
from the sign of the near-wall vorticity. The present 
results agree well with experiments, demonstrating the 
accuracy of the numerical solutions and the grid 
employed. The wall friction coefficient, Cf is assigned 
a positive value for forward flow and a negative value 
for reverse flow. The observed distributions are con- 
sistent with the streamline patterns presented earlier. 
As the Reynolds number  is increased, the peak friction 
coefficient decreases but the minimum remains almost 
constant• 

The distributions of the normalized wall vorticity, 
(w are shown in Fig. 3(b). To be consistent with the 
work of Nishimura et al. [2], the vorticity co is nor- 
malized by the maximum channel height//max and the 
corresponding local bulk velocity u . . . .  i.e. 

n 2 
~Ow - ~ R e C f (  rrax~ , ( 1 5 )  

~w Umax/ama x \ H ~  } 

At very low Reynolds numbers,  the wall vorticity is 
positive everywhere. As the flow separates from the 
walls, negative vorticity corresponding to the negative 
velocity is seen. The magnitudes of both the maximum 
and minimum wall vorticities increase with the Reyn- 
olds number.  

Figure 4 presents the temperature contours for the 
same Reynolds numbers. At  Re = 5.4, the tem- 
perature drops quickly because of diffusion from the 
walls as the fluid moves along the wavy passage. A 
thermal boundary layer develops along the walls. As 
the Reynolds number  increases, the temperature pro- 
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(a) tbl 

('e') (d) 

Fig. 4. Contours of normalized temperature at various Reynolds numbers : (a) Re = 5.4 ; (b) Re = 20.6 
(c) Re = 80.5; (d) Re = 144.0. 

files start  to be dis tor ted in the recirculation region. (a) 30 
Consequent ly ,  the thermal  bounda ry  layer has  been 
destroyed by the eddies. It is seen tha t  the tempera ture  25 
gradient  near  the r ea t t achment  po in t  is much  greater  
than  tha t  near  the separat ion point .  20 

Figure 5(a) presents the Nussel t  n u m b e r  dis- 
t r ibut ions  for the various Reynolds  numbers .  The Nu 15 
local Nussel t  n u m b e r  is defined as 

10 
hDh Dh ~O/~n (16) 

U u  - ~ -  -- 0m(~ ) 5 

where h is the convect ion heat  t ransfer  coefficient, Dh 0 
is the hydraulic  d iameter  of  the wavy channel  (which 
is equal  to twice the average channel  height,  H,v) 
and  0m(~) is the bulk mean  tempera ture  evaluated at  (b) 
cons tan t  ~ lines. The  m ax i m um  and  m i n i m um  Nussel t  
numbers  are locate,] near  the m i n i m u m  and m ax i m um  
cross-sections of  the passage, respectively. The differ- 
ence between the max imum and  m i n i m um  Nussel t  

10 ] numbers  is seen to increase with the Reynolds n u m b e r  Nu 
as the tempera ture  gradients  become steeper near  the 
m i n i m u m  cross-section. However,  as shown in Fig. 
5(b), the overall  heat  t ransfer  coefficient does not  
increase much  because the Nussel t  n u m b e r  in the mini- 
m u m  cross section has a relatively small cont r ibut ion .  

6. RESULTS IN THE U N S T E A D Y  FLOW REGIME 

Near  the t ransi t ion,  the cons tan t  mass  flow with 
pressure periodic bounda ry  condi t ion  was used as it 
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Fig. 5. (a) Variation of local Nusselt number at various 
Reynolds numbers in the steady regime. (b) Variation of 
Nusselt number with Reynolds number in the steady regime. 
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Fig. 6. A typical cycle of the vorticity dynamics at Reynolds number of 328 : (a) z = 178.0 ; (b) r = 181.5 ; 
(c) r = 185.0; (d) r = 188.5. 

has the advantage of  a direct control of  Reynolds 
number. At Re = 167, the results converge to their 
steady state. The least-stable mode is oscillatory with 
a frequency which matches the frequency of  the least- 
stable Tollmien-Schlichting mode for a plane channel 
flow. At a higher Reynolds number of  Re = 200, the 
flow becomes unsteady and bifurcates to a periodic 
attractor. The phase portrait  of  v vs u at a point 
approaches a limit cycle. As the Reynolds number 
is further increased, a new characteristic frequency 
appears and the flow exhibits a quasiperiodic 
behavior. This transition scenario has recently been 
discussed in detail by Guzm/m and A m o n  [25]. 
However,  our recent study indicates that the transition 
scenario also depends on the periodic boundary con- 
ditions employed in the numerical procedure. 

The oscillatory and enhanced heat transfer is the 
result of  the destabilization of  the separation bubbles 
by the vortices rolled up from the shear layers. This 
instability of  the shear layers is similar to that 
observed in grooved channels and can be classified to 
be of  Kelvin-Helmhol tz  type. Figure 6 shows a typical 
cycle of  the vorticity dynamics at a nominal Reynolds 
number of  328. The unsteady nature of  the upper and 
lower shear layers can be clearly seen in these figures. 
At r = 178, the roll-up of  the upper shear layer is 
more clearly evident. This vortex is convected into the 
next periodic passage by r = 185 and a new vortex 
begins to form. The dynamics of  the bot tom shear 
layer are similar but differ in phase by approximately 
seven time units from those of  the upper shear layer. 
It has been observed that the vorticity plot at r = 192 

is nearly identical to that at z = 178. It can be seen 
that in a given half  of  the domain, both clockwise 
and counter clockwise vortices exist and evolve in a 
complex manner. At z = 178, there is a region of  nega- 
tive vorticity close to the upper wall (dotted lines), 
separated by the shear layer with positive (counter 
clockwise) vorticity. The negative vorticity is a rem- 
nant in time of  a separation bubble formed in the 
wavy cavity at an earlier instant that is slowly engulfed 
by the shear layer. This interaction of  the core fluid 
with the fluid in the cavities replenishes the thermal 
boundary layer and results in enhanced heat transfer. 
The corresponding temperature fields at these time 
instances are shown in Fig. 7. At r = 178, we see that 
large temperature gradients exist at the upper wall. 
This is a result of  the core fluid penetrating into the 
cavity region as the shear layer rolls up into a vortex. 
At  r = 181.5, the vortex moves deeper into the cavity 
and further entrains the previously formed thermal 
boundary layer. As the upper shear layer convects 
into the next wavy passage, the bot tom shear layer 
now entrains the boundary layer in the lower cavity. 
These temperature plots may be compared with those 
in the steady region at Re = 144 which illustrate the 
differences between the steady and unsteady 
processes. The variation of  the Nusselt number  at the 
upper and lower surfaces along with their average is 
shown in Fig. 8. The Nusselt number is averaged 
over one wavelength of  either the higher or  the lower 
surface. It can be seen that the Nusselt number fluc- 
tuates quasiperiodically with an average considerably 
higher than the steady value. Al though the individual 
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(a) (b) 

(c) (d) 

Fig. 7. The temperature fields at Reynolds number of 328 : (a) ~ = 178.0 ; (b) ~ = 181.5 ; (c) ~ = 185.0; (d) 
r = 188.5. 

variations are large, because of  their being out of  
phase, the variations in the average are not  large. 
At  Re = 328, the time-averaged Nusselt number is 
approximately twice that at Re = 144. 

As the Reynolds number is further increased, the 
dynamics of  the flow become more complex, resulting 
in tearing of  the vortices from the shear layers. Figure 
9 shows the contours of  vorticity at Re = 520 at four 
instances. Corresponding temperatures plots are pre- 
sented in Fig. 10. It can be seen that the major  increase 
in heat  transfer occurs in the downstream half  of  the 
passage where the tip of  the shear layer rolls up and 
curls towards the walls. The dynamics of  the vortices 
at Re = 520 are significantly more complex than at 
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Fig. 8. Variation of Nusselt number with time for Re = 328. 

Re = 328 as the shear layer breaks into individual 
vortices. 

Figure l l ( a )  shows the overall Nusselt number 
( N u )  for the unsteady regime. There is a significant 
increase in Nu over the straight channel value of  7.54 
at these Reynolds numbers. Thus, wavy passages can 
be effective heat transfer enhancement devices at these 
transitional Reynolds numbers. 

The heat transfer enhancement is accompanied by 
an increase in the pressure drop compared with the 
planar channel values. Figure 11 (b) shows the friction 
factor as a function of  Reynolds number. In the steady 
regime, the friction factor is approximately twice that 
of  the planar channel. The increase in the pressure 
drop results from larger wall shear in the converging 
sections. The present calculations slightly under-pre- 
dict the experimental data of  Nishimura et al. [2], 
but show very good agreement with the experimental 
trends. 

7 .  C O N C L U S I O N S  

Flow patterns and heat transfer characteristics in 
a sinusoidally curved converging~diverging channel 
have been investigated through accurate numerical 
solutions of  the governing equations on a curvilinear 
orthogonal  grid. The wavy channel studied cor- 
responds to the geometry of  Nishimura et al. [2]. For  
Reynolds numbers less than 180, steady laminar flow 
is observed. Beyond this value a transition to chaotic 
flow accompanied by significant increase in heat trans- 
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Fig.  9. C o n t o u r s  o f v o r t i c i t y  a t  Re = 520 a t  f o u r  t i m e  i n s t a n c e s  : (a)  z = 140.0 ; (b)  r = 143.0 ; (c) z = 146.0 ; 
(d) ~ = 149.0. 

(a) (b) 

(c) (d) 

Fig.  10. C o n t o u r s  o f  t e m p e r a t u r e  a t  Re = 520 a t  f o u r  t i m e  i n s t a n c e s :  (a)  z = 140 .0 ;  (b)  z = 143 .0 ;  (c) 
= 146.0 ;  (d)  r = 149.0. 
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Fig. 11. (a) Variation of Nusselt number with Reynolds 
number in the unsteady regime. (b) Variation of friction 
factor with Reynolds number in the steady and unsteady 

regimes. 

fer is observed. This enhancemen t  in the heat  t ransfer  
results f rom self-sustaining oscillations which lead to 
the destabi l izat ion of  the l aminar  thermal  bounda ry  
layers. 
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